
1

Towards HPC-ABDS: An Initial High-Performance BigData Stack

Shantenu Jha, RADICAL, Rutgers University, Piscataway, USA
Judy Qiu, School of Informatics and Computing, Indiana University, Bloomington, USA
Andre Luckow, RADICAL, Rutgers University, Piscataway, USA
Geoffrey C.Fox, School of Informatics and Computing, Indiana University, Bloomington, USA

Many scientific problems depend on the ability to analyze and compute on large amounts of data. This
analysis often does not scale well, i.e. its effectiveness is hampered by the increasing volume, variety and
rate of change (velocity) of big data. There is a need to integrate features of traditional high-performance
computing, such as scientific libraries, communication and resource management middleware, with the rich
set of capabilities found in the commercial Big Data ecosystem, resulting in an integrated system generi-
cally called high-performance big data system (HPBDS). Our proposed preliminary implementation of the
HPBDS – includes many important software systems such as Hadoop available from the Apache open source
community and thus referred to as High-Performance Computing-Big Data Stack (HPC–ABDS) – has two
fundamental building blocks: (i) Middleware for Data-Intensive Analytics and Science (MIDAS) that will
enable scalable applications with the performance of HPC (High Performance Computing) and the rich
functionality of the commodity Apache Big Data Stack. (ii) The second building block will design and imple-
ment a set of cross-cutting high-performance data-analysis libraries SPIDAL (Scalable Parallel Interopera-
ble Data Analytics Library), which will support new programming and execution models for data-intensive
analysis in a wide range of science and engineering applications. These libraries will be implemented to be
scalable and interoperable across a range of computing systems including clouds, clusters and supercomput-
ers. The project libraries will have the same beneficial impact on data analytics that scientific libraries such
as PETSc, MPI and SCALAPACK have had for supercomputer simulations. In this paper, we study many
Big Data applications from a variety of research and commercial areas and suggest a set of characteristic
features and possible kernel benchmarks that stress those features for data analytics. We draw conclusions
for the hardware and software architectures that are suggested by this analysis.

General Terms: Big Data, HPC, Apache Hadoop

ACM Reference Format:
ACM 1, 1, Article 1 (August 2014), 23 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The growing importance of data in many fields including physical and biological sci-
ences, and the ability to derive insight and knowledge from increasing volumes of com-
plex data, points to the importance of advanced analytics. Analytics needs to be able to
utilize the full range of available infrastructure, however, the coupling between tools,
analytic engines and infrastructure is often rigid, thus it is often difficult to employ
existing solutions for contemporary environments that they were not natively or origi-
nally designed for. Further, many tools were developed at a time when parallelism was
not essential. In addition, interoperability at multiple levels remains elusive, as well
as difficult, and scalable yet general-purpose and broadly applicable solutions in the
form of analytic libraries and abstractions are noticeable by their absence.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/08-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:2 S Jha et al.

The importance of advanced analytics to derive insight and knowledge from increas-
ing volumes of complex data will continue to grow. The enterprise community have
made impressive gains and seem to have converged around the Apache stack, a dis-
tinctive feature is the existence of many implementations of the specific components of
the Apache stack, providing sufficient richness in the trade-off between performance
and capability. In contrast, within the scientific computing community, progress has
been reliant either on long-term foundational advances or short-term hardware fixes.
as opposed to integrated approaches that marry the relative technical strengths of the
two communities yet deliver these as implementations usable on high performance and
distributed computing HPDC infrastructure such as XSEDE, OSG and other domain-
specific infrastructure. In both domains, scalable yet general-purpose and broadly ap-
plicable solutions in the form of analytic libraries and abstractions are noticeable by
their absence.

To remedy this major gap and proffer an integrated solution that brings the best of
recent advances to the service of extreme-scale science requirements on current and
future science production platforms, we are developing HPC-ABDS – a first imple-
mentation of a high-performance Big Data stack (HPBDS) that integrates the best of
the Apache developments and HPC capabilities. HPC-ABDS will utilize and expose
the integrated relative technical strengths of the two hitherto disjoint approaches and
communities, yet it will focus on delivering these as production grade implementa-
tions that will bring the best-of-both to shared-infrastructure – such as NSF’s XSEDE,
DOE’s leadership machine, OSG and other domain-specific infrastructure, as well as
the software developments underway as part of the SI2 software program. HPC-ABDS
will translate these applications characteristics, infrastructural requirements and ex-
isting capabilities into well-defined and implemented building blocks.

External Data Access
(Virtual Filesystem, GridFTP, SRM, SSH)

Resource
Fabric

Compute, Storage and Data Resources
(Nodes, Lustre, Cores, HDFS)

Cluster Resource Manager
(YARN, Mesos, SLURM, Torque, SGE)

Communication
(MPI, RDMA, Hadoop Shuffle/Reduce, HARP

Collectives, Giraph point-to-point)

Analytics Libraries

Workload Management
(Pilots, Condor)

Higher-Level Workload
Management
(TEZ, LLama)

Framework specific
Scheduling (e.g. YARN)

Scalable Parallel
Interoperable
Data Analytics

Libraries
(SPIDAL)

Community
and

Exemplars

Middleware
for Data-
Intensive

Analytics and
Science
(MIDAS)

, Object Stores, NoSQL
In-memory Data Abstractions

(HBase, Object Stores, In-Memory, other NoSQL
stores, Spatial)

Message
Passing Iterative

MapReduceSearch

Remaining Apache Big
Data stack

integrated without
need for HP

enhancements
(SQL-engines, Storm,
Impala, Hive, Shark)

Classic
MapReduce

HPC-ABDS MapReduce

Iterative
Giraph

Programming
Models

Application Layer

Fig. 1. Key components of integrated HPBDS stack. Many capabilities unaffected by integration are not
shown explicitly

The key components of such an integrated platform are shown in Fig. 1. The aim of
HPC-ABDS is to aim for the performance of HPC and the breadth and productivity of
ABDS. The resultant integrated architecture is targeted at both production high-end
computing platforms (such as leadership machines and XSEDE), as well as (commer-
cial) cloud computing. As part of HPC-ABDS, we propose two fundamental building
blocks, Middleware for Data-Intensive Analytics and Science (MIDAS) and the Scal-
able Parallel Interoperable Data Analytics Library (SPIDAL).

The high-performance community has prospered thanks to libraries like MPI,
PETSc and SCALAPACK; SPIDAL brings this concept to data-intensive applications.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:3

SPIDAL Parallel Analytics Libraries will capture system abstractions and expose ap-
plication requirements and MIDAS the middleware upon which to build such libraries
that are interoperable yet high-performance, SPIDAL will enable interoperable high
performance data analytics and is based upon a careful analysis of architectures, tools
and application characteristics/requirements. Although built from many existing com-
ponents and capabilities, MIDAS is conceptualized and designed from first-principles
to ensure our productivity, interoperability and performance goals.

In earlier work [Jha et al. 2014b], we have discussed the need for merging the two
“common” stacks. In addition to a qualitative motivation, Ref [Jha et al. 2014b] pro-
vided a quantitative analysis of the type of abstractions and support required to enable
a successful hybrid stack. In this paper, we will move from a general motivation of the
need of a hybrid approach, to a discussion of the design philosophy & objectives of a
specific implementation of HPC-ABDS, which serves as a first prototype towards a gen-
eral purpose, interoperable high-performance big data stack for to support analytics on
high-end clusters, clouds and supercomputers.

2. SOURCES OF INFORMATION
In discussing the structure of Big Data applications, let us first examine the inevitably
incomplete input that we used to do our analysis. We have gained quite a bit of experi-
ence from our research over the years, but 3 explicit sources that we used were a recent
use case survey by NIST from Fall 2013 [NIST 2013a]; a survey of data intensive re-
search applications by Jha et al. [Jha et al. 2014a, 2013]; and a study of members of
data analytics libraries including R [R Project 2012], Mahout [Apache Mahout 2012]
and MLLib [MLLib 2014]. Following is a summary of the first two sources.

The NIST Big Data Public Working Group (NBD-PWG) was launched in June 2013
with a set of working groups covering Big Data Definitions, Taxonomies, Require-
ments, Security and Privacy Requirements, Reference Architectures White Paper Sur-
vey, Reference Architectures, Security and Privacy Reference Architectures and Big
Data Technology Roadmap. The Requirements working group gathered 51 use cases
from a public call and then analyzed them in terms of requirements of a reference
architecture [NIST 2013b]. Here we will strive to identify common patterns and char-
acteristics, which can be used to guide and evaluate Big Data hardware and software.
The 51 use cases are organized into nine broad areas with the number of associated use
cases in parentheses: Government Operation (4), Commercial (8), Defense (3), Health-
care and Life Sciences (10), Deep Learning and Social Media (6), The Ecosystem for
Research (4), Astronomy and Physics (5); Earth, Environmental and Polar Science (10)
and Energy (1).

Note that the majority of use cases come from research applications, although com-
mercial, defense and government operations have some coverage. A template was pre-
pared by the Requirements working group, which allowed experts to categorize each
use case by 26 features:

Use case Actors/Stakeholders and their roles and responsibilities; use case goals
and description. Specification of current analysis covering compute system, storage,
networking and software. Characteristics of use case Big Data with Data Source
(distributed/centralized), Volume (size), Velocity (e.g. real time), Variety (multiple
datasets, mashup), Variability (rate of change). The so-called Big Data Science (collec-
tion, curation, analysis) with Veracity (Robustness Issues, semantics), Visualization,
Data Quality (syntax), Data Types and Data Analytics. These detailed specifications
were complemented by broad comments including Big Data Specific Challenges (Gaps),
Mobility issues, Security and Privacy Requirements and identification of issues for
generalizing this use case.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:4 S Jha et al.

Table I. What is Parallelism Over for NIST Use Cases

General Class Examples
People Users (but see below) or Subjects of application and often both
Decision makers Researchers or doctors (users of application)
Items Experimental observations

Contents of online store
Images or Electronic Information nuggets
EMR: Electronic Medical Records (often similar to people parallelism)
Protein or Gene Sequences
Material properties, Manufactured Object specifications, etc., in custom
dataset

Modeled entities Vehicles and people
Sensors Internet of Things
Events Detected anomalies in telescope, credit card or atmospheric data
Graph Nodes RDF databases
Regular Nodes Simple nodes as in a learning network
Information Units Tweets, Blogs, Documents, Web Pages, etc. and characters/words in them
Files or data To be backed up, moved or assigned metadata
Particles/cells/mesh points Used in parallel simulations

The complete set of 51 responses in addition to a summary from the working group
of applications, current status and futures as well as extracted requirements can be
found in [NIST 2013b]. They are summarized in the Appendix which also gives 20
other use cases coming from the NBD-PWG which do not have the detailed 26 fea-
ture template recorded. These 20 cover enterprise data applications and security and
privacy.

2.1. Properties of the 51 NIST Use Cases
[Fox and Luckow 2014] summarize the characteristics of the 51 use cases, which we

will combine with other input for the Ogres. Note that Big Data and parallel pro-
gramming are intrinsically linked as any Big Data analysis is inevitably processed
in parallel. Parallel computing is almost always implemented by dividing the data be-
tween processors (data decomposition); the richness here is illustrated in Table I which
lists the members of space that is decomposed for different use cases; of course these
sources of parallelism are broadly applicable outside the 51 use cases they were ex-
tracted from. In Table II, we identify use case features for 15 use cases and map these
to Ogre facets. The second column maps to the use case that illustrate this feature;
note these are not exclusive so any one use case will illustrate many features.

For commonly used machine learning applications, there is an interesting distinction
between what is termed Local (LML) or Global machine learning (GML) in Table II. In
LML, there is parallelism over items of Table I and machine learning is applied sepa-
rately to each item; needed machine learning parallelism is limited, typified by use of
accelerators (GPU). In GML, the machine learning is applied over the full dataset with
MapReduce, MPI or an equivalent. Typically GML comes from maximum likelihood or
χ2 with a sum over the data items - documents, sequences, items to be sold, images,
etc., and often links (point-pairs). Usually GML is a sum of positive numbers. as in
least squares, and is illustrated by algorithms like PageRank, clustering/community
detection, mixture models, topic determination, Multidimensional scaling, and (Deep)
Learning that constructs a learning network integrating all images.

3. TOWARDS A HIGH-PERFORMANCE BIG DATA SOFTWARE (HPBDS) ENVIRONMENT
As alluded to, the HPC-ABDS [Jha et al. 2014b] approach was partially inspired by the
NIST big data initiative [NIST 2013a] that generated a collection of 71 use cases as
well as a taxonomy, reference architecture, roadmap and study of security and privacy.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:5

Table II. Some Features of NIST Use Cases

Abbrev. # Description
PP 26 Pleasingly Parallel or Map Only
MR 18 Classic MapReduce MR (add MRStat below for full count)
MRStat 7 Simple version of MR where key computations are simple reduction as found in

statistical averages such as histograms and averages
MRIter 23 Iterative MapReduce or MPI
Graph 9 Complex graph data structure needed in analysis
Fusion 11 Integrate diverse data to aid discovery/decision making; could involve sophisti-

cated algorithms or could just be a portal
Streaming 41 Some data comes in incrementally and is processed this way
Classify 30 Classification: divide data into categories
S/Q 12 Index, Search and Query
CF 4 Collaborative Filtering for recommender engines
LML 36 Local Machine Learning (Independent for each parallel entity)
GML 23 Global Machine Learning: Deep Learning, Clustering, LDA, PLSI, MDS, Large

Scale Optimizations as in Variational Bayes, MCMC, Lifted Belief Propagation,
Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt. Can call EGO or
Exascale Global Optimization with scalable parallel algorithm

51 Workflow: Universal so no label
GIS 16 Geotagged data and often displayed in ESRI, Microsoft Virtual Earth, Google

Earth, GeoServer etc.
HPC 5 Classic large-scale simulation of cosmos, materials, etc. generating (visualization)

data
Agent 2 Simulations of models of data-defined macroscopic entities represented as agents

Applica'on	 	 Abstrac'ons/Standards	
Graphs,	 Networks,	 Images,	 Geospa2al	 .	

High	 Performance	 Applica'ons	
120	 So9ware	 projects	

Scalable	 Parallel	 Interoperable	 Data	 Analy2cs	
Library	 (SPIDAL)	

High	 performance	 Mahout,	 R,	 Matlab	 …..	

Middleware	 for	 Data	 Intensive	 Analy2cs	 and	 Science	
(MIDAS)	

System	 Abstrac'on/Standards	
Data	 Format	 and	 	 Storage	

Resource	 Fabric	
Nodes,	 Cores,	 Lustre,	 and	 HDFS	

HPC	 	 Yarn	 	 for	 	 Resource	 	 management	
Horizontally	 scalable	 parallel	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Programming	 model	
Collec2ve	 and	 Point	 to	 Point	 Communica2on	
Support	 for	 itera2on	 (in	 memory	 processing)	

Fig. 2. HPC-ABDS

Later [Chang 2014] meetings identified use case patterns and mapped them to the
NIST reference architecture. Figure 2 summarizes the ideas in an HPC-ABDS hour-
glass.To achieve high performance on data anlaysis, on the systems side, we have two
principles: the Kaleidoscope of Apache Big Data Stack with 120 projects (see 5) has
important broad functionality with a vital large support organization; HPC includ-
ing MPI has striking success in delivering high performance, however with a fragile
sustainability model. Therere key systems abstraction where Apache approach needs
careful integration with HPC in areas of resrouce management, storage, programming
model (for horizontal scaling or parallelism), collective and point-to-point communi-
cation, support of iteration, and richness of data interface not just key-value pairs.
In application areas, we define application abstractions to support Graphs/network,
Geospatial, Genes and Images.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:6 S Jha et al.

Ref [Fox and Luckow 2014] identified a set of Ogres (big data patterns) covering big
data analytics with multiple facets including specific algorithms, problem architecture
and its features, application class and data source structure. Here we exploit these
facets to identify the programming models, data source models and overall end-to-end
application models that MIDAS needs to support.

Based upon an analysis of the Ogres, we identify the importance of the 5 parallel
programming models. The parallel programming models supported by HPC-ABDS are:
— PM1) Pleasingly Parallel (PP) includes many cases where there are sophisticated

local machine learning applied in parallel – as in parallel image processing without
global optimizations.

— PM2) Search (Srch) includes collaborative filtering (in Mahout), motif (meme) de-
tection in graph (network) algorithms, and spatial relationship based queries for
spatial data, and is implemented using classic MapReduce or non-iterative Giraph.

— PM3) Iterative MapReduce or Map-Collective using Collective Communication are
seen in many global machine learning algorithms applied over the complete dis-
tributed dataset and are illustrated by clustering and dimensionality reduction us-
ing parallel linear algebra at their core.

— PM4) Iterative Giraph is Map-Communication with point-to-point communication
and includes graph algorithms such as maximum clique, connected component, find-
ing diameter, and community detection. The problems differ in the difficulty of de-
termining the data partitioning and this classic parallel load balancing issue can
need sophisticated runtime techniques.

— PM5) Asynchronous thread-based graph algorithms These are illustrated by short-
est path and betweenness centrality algorithms for shared memory machines and
we do not integrate them into HPC-ABDS in this proposal.
In Table III, we present 5 distinct problem architectures that map into 5 distinct

system architectures to cover the Ogres. The first four architectures of Table III which
correspond exactly to the four forms of MapReduce that we have presented previ-
ously [Ekanayake et al. 2010a] summarized. Note this only describes some core fea-
tures of the facets in [Fox and Luckow 2014]. There are many other issues that need
to be addressed including support of workflow. In particular the architecture for the
rapidly evolving field of streaming (distributed) data needs more work.

Note that we separate Map-Collective [Barrett et al. 1994; der Wijngaart et al. 2012]
and Map-(Point to Point) Communication following the Apache projects Hadoop, Spark
and Giraph that focus on these cases. These programming models or run times differ
in communication style, application abstraction (key-value versus graph) and possible
scheduling/load-balancing. HPC with MPI suggests that one could integrate into a
single environment. This approach is illustrated by the Harp plug-in [Qiu and Zhang
2014] to Hadoop which supports both models.

SPIDAL will capture these common characteristics and requirements by identifying
key abstractions; it will utilize capabilities of the underlying middleware that will be
exposed via well-designed and engineered libraries. The MIDAS middleware imple-
ments these with high performance in an ABDS context. MIDAS is based on abstrac-
tions in the areas: a) Software defined System, b) Storage layer including a spatial
access abstraction, c) Scheduling layer using advances in multi-level and application-
level scheduling, d) Collective layer that permits Map Collective generalization of Iter-
ative MapReduce, e) Parallelism or Programming model which generalizes the popular
Giraph and MPI SPMD models.

4. SCALABLE PARALLEL INTEROPERABLE DATA-ANALYTICS LIBRARY (SPIDAL)
This section summarizes the core algorithms proposed initially for SPIDAL.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:7

Table III. Distinctive Software/Hardware Architectures for Data Analytics

1. Pleasingly Paral-
lel (Map Only)

Includes local machine learning (LML) as in par-
allel decomposition over items and applying data
processing to each item. Hadoop could be used
as well as other High Throughput Computing or
Many task tools

2. Classic Map-
Reduce

Includes MRStat, search applications and those
using collaborative filtering and motif finding im-
plemented using classic MapReduce (Hadoop)

3. Iterative Map-
Collective

Iterative MapReduce using Collective Communi-
cation as needed in clustering - Hadoop with
Harp, Spark etc.

4. Iterative Map-
Communication

Iterative MapReduce such as Giraph with point-
to-point communication, includes most graph al-
gorithms such as maximum clique, connected
component, finding diameter, community detec-
tion). Varys in difficulty of finding partitioning
(classic parallel load balancing)

5. Shared (Large)
Memory

Thread-based (event driven) graph algorithms
such as shortest path and Betweenness centrality.
Large memory applications

4.1. Graph and Network Algorithms
4.1.1. Architectures for Graph Algorithms. Distributed-memory vs. shared-memory.

For graph problems, researchers have developed both distributed-memory algo-
rithms [N. Edmonds 2010; Alam et al. 2013; Arifuzzaman et al. 2013; Zhao et al. 2010,
2012] and shared-memory algorithms [Prountzos and Pingali 2013; Ediger et al. 2012;
Bader and Cong 2005, 2004; Madduri et al. 2007, 2009]. In a distributed memory sys-
tem, each processor has its own local memory, and data is partitioned so that each
processor contains one partition in its memory. Since processors may need to com-
municate and exchange data with one another, poor locality is a major challenge for
distributed-memory systems, causing communication overhead that can lead to de-
creased performance. A distributed memory system is good for graph problems with
high locality. In a shared-memory system, data is stored in a common shared memory
accessed by all processors and locality is not critical, although efficient thread paral-
lelism may still be hard.

Message Passing Interface (MPI) vs. Giraph. MPI is a general-purpose distributed
memory system for parallel programming, with efficient communication primitives.
Efficient MPI implementations have been developed for a number of graph problems,
which scale to very large networks, using problem-specific knowledge of the computa-

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:8 S Jha et al.

External Data Access
(Virtual Filesystem, GridFTP, SRM, SSH)

Resource
Fabric

Compute, Storage and Data Resources
(Nodes, Lustre, Cores, HDFS)

Cluster Resource Manager
(YARN, Mesos, SLURM, Torque, SGE)

Communication
(MPI, RDMA, Hadoop Shuffle/Reduce, HARP

Collectives, Giraph point-to-point)

Analytics Libraries

Workload Management
(Pilots, Condor)

Higher-Level Workload
Management
(TEZ, LLama)

Framework specific
Scheduling (e.g. YARN)

Scalable Parallel
Interoperable
Data Analytics

Libraries
(SPIDAL)

Community
and

Exemplars

Middleware
for Data-
Intensive

Analytics and
Science
(MIDAS)

, Object Stores, NoSQL
In-memory Data Abstractions

(HBase, Object Stores, In-Memory, other NoSQL
stores, Spatial)

Figure 1. HPC-ABDS: Layered Architecture View

Message
Passing Iterative

MapReduceSearch

Remaining Apache Big
Data stack

integrated without
need for HP

enhancements
(SQL-engines, Storm,
Impala, Hive, Shark)

Classic
MapReduce

HPC-ABDS MapReduce

Iterative
Giraph

Programming
Models

MIddleware for Data-Intensive Analytics and Science (MIDAS) API

Govt.
Operations

Defense
Commerical

Deep
learning and
social media

HealthCare &
Life Science

Earth, Env. &
Polar

Science
Ecosystem for

Research
Astronomy &

Physics

Fig. 3. SPIDAL: Library and Algorithms

tion and communication patterns; this requires significant HPC expertise. In contrast,
Giraph is easy to use, but does not allow easy access to partitioning and load balancing.
Two main challenges in parallelization are: obtaining good estimates of the computa-
tion cost for each partition, and load balancing, both of which require problem specific
insights [Nguyen et al. 2013]. This makes the problem of finding good partitions that
minimize communication cost very challenging [Alam et al. 2013; Arifuzzaman et al.
2013].

4.1.2. Graph Algorithms in SPIDAL. To deal with the challenges posed by massive net-
works, we will develop new algorithmic techniques based on MapReduce and Giraph.
In iterative MapReduce, we will explore techniques to decompose the problem and
enable efficient information exchange through the reduce operation. The problem of
finding network motifs/subgraphs is well-studied [Zhao et al. 2010, 2012; Alon et al.
2008; Aravind and Raman 2002; Gonen and Shavitt 2009; Milo et al. 2002; Qin and Gao
2012] with sequential algorithms, although [Ribeiro et al. 2012] addresses a shared-
memory architecture. We developed distributed-memory parallel algorithms [Zhao
et al. 2010, 2012]; however, these algorithms are for a few special classes of motifs, e.g.,
trees. We propose to develop Giraph-based distributed-memory parallel algorithms for
a more general class of motifs. We will also build on the techniques of Karloff et al.
[2010] to explore efficient MapReduce implementations for other PRAM algorithms
with super-quadratic key-value space complexity, and identify problem classes which
do not scale in MapReduce. For such problems, we will use Giraph. We will build on
the general conversion theorem [Klauck et al. 2013] to develop implementations of al-
gorithms for problems such as connectivity, subgraph enumeration and random graph
generation in Giraph. Some of the results in [Klauck et al. 2013] yield constant factor
or logarithmic approximation algorithms for problems such as shortest paths in near
optimal time. We will explore the complexity of optimal algorithms for these problems.

Community detection problems (including clustering approaches) have only received
serious attention recently. Current methods [Satuluri et al. 2011; Meyerhenke et al.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:9

2011; Satuluri and Parthasarathy 2009; Fortunato 2010; Sarkar and Dong 2011;
Zhang et al. 2009] do not scale well for large networks, including parallel algo-
rithms [Meyerhenke et al. 2011; Satuluri and Parthasarathy 2009; Fortunato 2010;
Sarkar and Dong 2011; Zhang et al. 2009] for shared-memory architecture that can-
not support massive-scale networks. We propose to develop scalable and distributed-
memory parallel algorithms using Giraph. David Baders group (Georgia Tech) de-
veloped parallel algorithms for some other network problems, such as shortest path
and betweenness centrality [Madduri et al. 2007; Bader and J. JJ 1996; Bader and
Madduri 2008; Madduri and Bader 2009; Bader 2010; Green et al. 2012; Jiang et al.
2009]. Edmonds, Hoefler and Lumsdaine [N. Edmonds 2010] recently developed a
space-efficient parallel algorithm for computing betweenness centrality in distributed-
memory systems, while efficient sequential algorithms have been developed for se-
lected network analytics problems such as diameter, pagerank, and counting triangles,
at CMU (Christos Faloutsos) [Faloutsos 2012; Kang et al. 2009, 2011; Tsourakakis
et al. 2009] and Sandia National Lab [Zhang et al. 2009; Seshadhri et al. 2012a,b].
There also are sequential libraries for network analytics such as Pajek [Batagelj and
Mrvar 1998], Pegasus [Faloutsos 2012] (Christos Faloutsos), SNAP [Leskovec 2012]
(Jure Leskovec at Stanford), NetworkX [Hagberg et al. 2008] (at Los Alamos National
Lab) and statnet [Handcock et al. 2003]. Similar libraries for parallel graph algorithms
are needed to work with emerging massive networks.

4.2. Spatial Queries and Spatial Analytics Algorithms Related Work
Spatial Data Management Systems (SDBMS) have major limitations on managing and
querying large scale spatial data. SDBMSs [pro 2013f,i,c,h] rely on parallel DBMS ar-
chitectures such as a shared nothing architecture [Mehta and DeWitt 1995; Patel et al.
1997; pro 2013j,d,g] to scale out. Parallel SDBMSs through partitioning are not opti-
mized for computationally intensive operations such as geometric computations [Wang
et al. 2012], and lack spatial partitioning to balance data and task loads [pro 2013b].
Data loading overhead is another major bottleneck [Pavlo et al. 2009; Aji et al. 2013;
Wang et al. 2013]. GIS systems [Chang 2003; pro 2013a] often use SDBMS as the
backend spatial engine. Work in [Cary et al. 2009; Zhang et al. a,b; Liu et al. 2010;
Pozdnoukhov and Kaiser 2011; Li et al. 2012; Guo et al. 2010; Ballesteros et al. 2011;
Ma et al. 2009; Akdogan et al. 2010] tries to tackle specific spatial algorithms using
MapReduce, and ongoing MapReduce spatial querying systems include [Eldawy and
Mokbel 2013; Daszak 2000]. Our Hadoop-GIS [Aji et al. 2013; pro 2013e] provides a
general framework for spatial queries and analytics with MapReduce. Hadoop-GIS is
integrated into Apache Hive to support declarative spatial queries.

Spatial data has multiple dimensions and there is no concept of a key in a spatial
space for data partitioning or task partitioning. We will partition space into tiles, and
breaks down time-consuming spatial operations into smaller tasks on tiles, running
them in parallel in HPC-ABDS MapReduce. Thus a tile serves as a key, and the objects
of a tile are the value. To avoid data skew, density aware spatial partitioning methods
are provided. Spatial query processing then becomes a problem of designing query
methods that can run on tiles independently while preserving correct semantics. A
generic framework for distributed spatial data processing has the following steps. Ini-
tialization includes data partitioning, uploading and indexing. For each spatial query,
the index is used to identify regions of interest for the query. After that, spatial query
processing is executed independently for each tile, in parallel. During each tile based
query, on-demand indexing can be provided to accelerate queries. Then a normaliza-
tion step will be performed to fix results due to partitioning. Most spatial processing
methods can be mapped into above patterns, and spatial clustering follows global ma-

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:10 S Jha et al.

chine learning patterns including nearest neighbor search, density and statistics based
spatial clustering and regression analysis.

4.3. Core Image Processing Algorithms Related Work on Pathology informatics
The availability of advanced scanners has fueled efforts in whole slide image analysis.
Algorithms have been developed for detection and extraction of features from whole
slide images. Data models and databases for representation and management of mi-
croscopy image data have also been developed [Goldberg et al. 2005; Schiffmann et al.
2006; Martone et al. 2008, 2003; Hayden et al. 2007; Wang et al. 2010]. ITK and VTK
are two well-known libraries mainly designed to support Radiology images but se-
quential processing can take hours for an image. Several recent research efforts, have
investigated the use of GPUs, distributed memory parallel machines, and Grid com-
puting to analyze large images and datasets. SPIDAL will build on and complements
this and will enable much larger scale investigations. The abstractions will enable
interoperability of image analysis with other methods such as clustering, motif detec-
tion, complexity reduction, and network abstraction, leading to broader deployment
and novel analyses. Related work in computer vision.

While computer vision has a 50 year history, only recently have researchers con-
sidered large-scale datasets driven by the dramatic rise of online social media. For in-
stance, papers in 3D reconstruction [Crandall et al. 2011; Agarwal et al. 2009; Crandall
et al. 2011; Crandall and Snavely 2012], visual geolocation [Li et al. 2009; Hays and
Efros 2008], denoising [Hays and Efros 2007], scene classification [Xiao, Hays, Ehinger,
Oliva, and Torralba Xiao et al.], and object recognition [University 2014] use millions
of images from Flickr. While there are established libraries for single machine com-
puter vision, like OpenCV, Matlab, CImg, VLFeat, and ImageJ, there are not widely
adopted libraries for large-scale computer vision, leading researchers to roll their own
ad-hoc libraries (although some nascent parallel libraries are under development, like
CloudCV (Virginia Tech) and Hadoop Image Processing Interface (Virginia)).

In SPIDAL, we will provide a generic high-performance framework that frees vision
researchers from considering systems-level issues.Our core image processing library
encapsulates common operations employed by computer vision, pathology informat-
ics, spatial informatics, and radar informatics. These routines include low-level image
preprocessing like convolution, edge detection, color correction; core primitive object
detection (e.g. Hough transform) and segmentation (MinCuts); low-level feature ex-
tracting [Lowe 2004; Dalal and Triggs 2005; Torralba, Murphy, Freeman, and Rubin
Torralba et al.]); registering images with 3D models; object matching; and 3D feature
extraction.

The library also includes derived routines for specific domains. For example, in
pathology and spatial informatics, whole slide images are extremely large (10 billion
pixels per image) and cannot fit in memory requiring tiling as described above. This
is not the case in computer vision, where images are typically from consumer cameras
and the challenge is number of images and not their individual size. We will provide
a generic parallel image processing pipeline that supports different image analysis al-
gorithms with HPC-ABDS. For large images, we provide tile-based partitioning with
buffered tiles at boundaries. Tiled images can be processed independently in paral-
lel for image pre-processing, segmentation, and feature extraction. The results from
tiles are converted into vector-based geometric shapes and structural features with
correction for boundary object normalization. For 3D images, one performs 3D object
grouping from 2D segmentation results, and 3D feature extraction, which again can
be run in parallel.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:11

4.4. Existing General Libraries and Machine Learning
Mahout [Apache Mahout 2012] is an open source project that builds machine learning
libraries based on Hadoop MapReduce. It supports supervised and unsupervised learn-
ing algorithms such as Collaborative Filtering, Kmeans Clustering, Latent Dirichlet
Allocation, and Naive Bayes Classifiers. While it offers fast implementations for some
algorithms like Na”ive Bayes, for problems with iteration (like clustering) it sacri-
fices performance for scalability by writing intermediate data out to disk after each
iteration. For several algorithms, like Hidden Markov Models, Multilayer Perceptron,
and Logistic Regression, it does not provide any parallel implementation at all (just a
single-machine version).

We have studied Mahout [Apache Mahout 2012] carefully, and have chosen key algo-
rithms to include in SPIDAL, including SVD, Random Forests, SVMs, Kmeans, HMMs,
and LDA. For some of these, either IU or Mahout already has parallelized code, which
we will simply port to HPC-ABDS to make them available in our framework. Other
Mahout algorithms are either not parallelized or require iteration (which in Hadoop
requires costly disk I/O); for these, HPC-ABDS will offer much higher-performance
implementations.

The Spark MLLib (MLbase) library [MLLib 2014] is another promising effort, offer-
ing a few algorithms (SVM, Kmeans, gradient descent) supported by a small commu-
nity. We will monitor developments in that library as it matures and port from there
if possible. We will also port clustering routines from R [pro 2012] to test our ability to
move algorithms from this important library to HPC-ABDS.

Parallelized implementations from IU include clustering with a sophisticated de-
terministic annealing (DA) method which was originally developed with Rose [Rose
1998; Rose et al. 1990] but with recent parallel implementations by Fox [Fox 2013; Fox
et al. 2009a]. These codes cover the cases of both metric and non-metric spaces and
have been used extensively in bioinformatics [Qiu et al. 2011; Fox et al. 2009b; Ruan
et al. 2012a; Stanberry et al. 2012; Ruan et al. 2012b; Qiu et al. 2010,?; Hughes et al.
2012; Ruan and Fox 2013; Ruan et al. 2014; Fruhwirth et al. 2011]. These will build
upon [Choi 2012], wherein developed DA improvements to mixture model approaches
to find hidden factors and we will also implement this in HPC-ABDS. This was suc-
cessfully applied to find the context of HPC jobs and improve pre-fetching [Choi et al.
2012].

The non-metric case uses Multi-Dimensional Scaling (MDS) using either SMACOF
improved with DA [Ruan and Fox 2013; Bae 2012], or a method using nonlinear χ2

minimization [Kearsley et al. 1995] which is typically slower but allows a more flex-
ible weighted objective function. There are several methods for dimension reduction
for metric spaces and we will deploy in SPIDAL, e.g., a parallel DA enhanced GTM
(Generative Topographic Mapping) from [Choi 2012; Choi et al. 2011].

5. MIDDLEWARE FOR DATA-INTENSIVE ANALYTICS AND SCIENCE (MIDAS)
The aim of MIDAS is to provide a scalable runtime system and appropriate resource-
management abstractions enabling SPIDAL, and thereby Big Data applications. As
identified by the Ogres and their facets, Big Data applications have a wide range of
characteristics requiring different programming models and different forms of paral-
lelism: from the execution of large numbers of loosely-coupled tasks, to in-memory
caching for iterative MapReduce to parallel linear algebra computations to support
GML algorithms, such as Deep Learning. MIDAS provides the underlying resource
management middleware and heterogeneous infrastructure access layer which will
support SPIDAL libraries to work efficiently across these application types over a
range of resources.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:12 S Jha et al.

schedule compute
units to pilot compute

MIddleware for Data-Intensive Analytics and Science (MIDAS) API

Execution-
Processing Model
Pleasingly Parallel

Execution-
Processing Model

Classical MR

Execution-
Processing Model

Iterative MR

Execution-
Processing Model

GiRAPH

Pilot (Data and Compute) Layer Application-level Scheduiling

Workload Management
(e.g. Condor)

Higher-Level Workload
Management
(TEZ, LLama)

Framework specific
Scheduling (e.g. YARN)

Communication
(MPI, RDMA, Hadoop Shuffle/Reduce, HARP

Collectives, Giraph point-to-point)

In-memory Data Abstractions
(HBase, Object Stores, In-Memory, other

NoSQL stores, Spatial)

Execution
Processing

Models

Data and
Communication

Pilot-based
Resource

Management

Higher-
Level

Scheduling
Task

Execution

XSEDE OSGAmazonFuture
Grid Azure

Fig. 4. MIDAS Layered Architecture View: The Pilot-Layer provides the basis for higher-level MIDAS ab-
stractions supporting e.g. access to heterogeneous compute and data resources and in-memory caching for
the iterative MapReduce programming model.

Figure 4 shows the architecture of MIDAS. There are two primary design objec-
tives of MIDAS: (i) Provide high-level abstractions (e.g. scalable data processing, inter-
process communication and storage supporting both query and analysis), so as to hide
details of different lower level implementations (e.g. for accessing data or resources via
HPC schedulers such as SLURM, Big Data schedulers, such as YARN [Hortonworks
2014] or Cloud backends like Amazon and Google), (ii) provide a flexible middleware
to support four key programming models identified in Table III: (PM1) Pleasingly par-
allel, (PM2) Search using Classic MapReduce, (PM3) Iterative MapReduce with Col-
lectives and (PM4) Iterative Graph Processing. These programming models require
different runtime systems to extract performance on different platforms varying from
clouds to HPC. MIDAS will provide the scalable runtime system to support these pro-
gramming models via appropriate execution-processing capabilities on different plat-
forms.

To support these programming models, we propose several abstractions: an inter-
process communication layer and a layer handling computation, offering, for exam-
ple, different data abstractions for Hadoop (key-value, dataflow) and Giraph (graph).
Communication abstractions enable the coordination and exchange of data between
tasks. In particular iterative MapReduce tasks need collective operations while graph
processing largely needs point-to-point communication. We have already shown that
using classic MPI techniques can provide a collective layer that outperforms existing
(iterative) MapReduce approaches on both cloud and HPC environments [Jha et al.
2014b; Qiu and Zhang 2013, 2014]. We will expand this concept in MIDAS covering all
4 programming models and defining the HPC-ABDS MapReduce model shown in sys-
tem architecture. The communication layer is designed in a pluggable, infrastructure
agnostic way and can be used within Hadoop applications and HPC application, based
e. g. on the Pilot abstraction.

In-Memory abstractions can be used to implicitly facilitate the data exchange be-
tween multiple tasks, or to efficiently retain data between generations of tasks. This
is essential to efficiently support iterative processing or graph processing (patterns
(MP3) and (MP4)). In particular, Harp [Qiu and Zhang 2014] building on Iterative

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:13

MapReduce Twister [Ekanayake et al. 2010b] is an open source collective commu-
nication library which can be plugged into Hadoop. With this plug-in, Map-Reduce
jobs can be transformed into Map-Collective jobs and users can invoke efficient in-
memory message passing operations such as collective communication (e.g. broadcast
and group-by) and point-to-point communication directly in Map tasks. For the first
time, Map-Collective brings high performance to ABDS in a clear communication ab-
straction, which did not exist before in the Hadoop ecosystem. We expect Harp to equal
MPI performance with straightforward optimizations. In addition, Harp improves the
expressiveness in big data processing with the support of data abstraction types such
as arrays, key-values, and graphs with related collective communication operations
on top of each type. Several applications have been developed based on Harp frame-
work, including K-means clustering, Multi-dimensional scaling and Page-Rank. Harp
being based on Hadoop leverages better sustainability and fault tolerance properties.
The above is illustrative of a critical design challenge that faces MIDAS: balancing
performance with flexibility.

In earlier Hadoop versions, it was necessary to retrofit non-MapReduce applications,
as in for pleasingly parallel processing and machine learning, into the rigid MapRe-
duce programming model. This is not necessary anymore for Hadoop-2 (YARN) [Hor-
tonworks 2014], as YARN can co-locate and run any application MPI, MapReduce,
iterative MR, graph, or based on any other library/framework on a Hadoop cluster.
Ensuring support for YARN on HPC platforms such as XSEDE platforms will thus
be an important objective. However, while YARN removes the programming model
limitation, various challenges remain: (i) the current usability of YARN on HPC en-
vironments is limited (as it was designed as a system-level framework), (ii) resource
containers cannot easily be re-used across multiple tasks, and (iii) interoperability
with HPC environments (Blue Waters, to a variety of XSEDE resources). To address
these limitations, we propose to build upon and extend the Pilot-abstraction, which is a
proven approach in supporting data-parallel tasks on top of heterogeneous infrastruc-
tures [Luckow et al. 2012, 2014]. Using Pilot-Jobs, we allow processing frameworks to
interoperably exploit YARN, common HPC and cloud resource managers. Further, we
will extend the Pilot-Data abstraction to support in-memory processing required for
iterative MapReduce in an infrastructure and data source agnostic way.

Looking at data source aspects of the Ogres (big data patterns), most applications
use a collection of files but we expect a growing interest in object stores and will sup-
port both with the Pilot-Data abstraction. Several search problems need customizable
dynamic indices. Also, relevant is in-memory data storage, data format, data partition-
ing and the access model. Thus, we will extend canonical abstraction of Pilot-Jobs to
Pilot-Data to support interoperable access to data stored in Hadoop, databases, and
NOSQL as well as other types of HPC storage (Lustre, iRODS, etc.) as needed.

In addition to data access, MIDAS will support the common data processing pat-
terns (partition, process, merge, etc.) on top of datasets managed by Pilot-Data. As
demonstrated by the evolution to YARN, there is an increasing need to provide appli-
cation specific scheduling and resource management control; the Pilot abstraction has
demonstrated such capabilities. Application-level scheduling as provided by the Pilot-
layer will be an essential tool to integrate library resource usage modes (see processing
patterns) with resource allocation/usage. This will be required for the network science
community, where flexible integration with a logical resource partitioner is important.
For example, we will have to examine the trade-offs of partitioning at the MPI level or
at the Giraph programming model depending upon data size and architecture. In gen-
eral, MIDAS is intended to be agnostic to workflow models and will support gateways,
scripting and specific workflow tools. Auto-tuning (akin to ATLAS for linear algebra
software) and load balancing for each execution processing model to optimize data lo-

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:14 S Jha et al.

cality and communication is a critical capability to provide to analytical application.
Last but not least, the infrastructure access layer will use the existing capabilities
of SAGA, which provides most resource access functionality using a standards-based
layer. This will ensure that the new software footprint of MIDAS will be small, whilst
providing reuse of established and existing building blocks.

6. DISCUSSION AND CONCLUSION
As alluded to in the title, HPC-ABDS is the first attempt led by the Indiana-Rutgers
collaboration at creating a software system to meet Big data analytics, i.e., a high-
performance Big Data Stack (HPBDS). There are several incipient and emerging ef-
forts at addressing the requirements for big data on high-end systems. HPC-ABDS is
distinguished by its efforts to address the requirements of a well defined set of ap-
plication patterns and their primary characteristics (referred to as Ogres), that are
commonly required of data-analytics applications, via the construction of libraries that
work across a range of high-end computing platforms, including clouds. We believe the
design of such SPIDAL libraries – based upon an analysis of Big Data Ogres, as op-
posed to a limit set of applications – along with a careful co-design of the resource
management MIDAS layer makes HPC-ABDS distinctive.

In addition to the NIST use cases, HPC-ABDS will enable multiple many other com-
munities to use a core set of libraries SPIDAL – graphs, imaging, spatial, remote
sensing, HPC simulation and modeling – on top of an abstractions-based (Job, data,
communication, in-memory operations, parallelism) high performance middleware MI-
DAS. By integrating the two fundamental building blocks – MIDAS and SPIDAL,
HPC-ABDS will provide new levels of scalability, application performance along mul-
tiple dimensions by combining application expertise, the broad Apache Big Data stack
and best practice HPC. Specifically, HPC-ABDS will, (i) implement resource manage-
ment capabilities of MIDAS using job and data abstractions, as well as scalable and
reusable fine-grained building blocks for HPC/high-end resources that realize com-
munication and in-memory abstractions, (ii) define library interfaces (SPIDAL, with
appropriate language bindings) to these fine-grained building blocks, (iii) provide scal-
able and parallel analytic libraries by integrating the aforementioned interfaces, the
fine-grained building blocks with the resource management middleware capabilities of
MIDAS.

SPIDAL libraries will be provided with a set of simple benchmark kernels. The ini-
tial focus will be on data analytics libraries and needed abstractions built on a skeletal
MIDAS middleware whose key features have already been demonstrated.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:15

Fig. 5. For updated figure see: http://hpc-abds.org/kaleidoscope/

7. APPENDIX
REFERENCES

2012. CRAN Task View: Cluster Analysis and Finite Mixture Models. (July 21 2012).
http://cran.cnr.berkeley.edu/web/views/Cluster.html

2013a. ArcGIS. (2013). http://www.esri.com/software/arcgis
2013b. Database Partitioning,Table Partitioning, and MDC for DB2 9. (2013). http:

//www.redbooks.ibm.com/redbooks/pdfs/sg247467.pdf
2013c. Delivering Location Intelligence with Spatial Data. (2013). http://www.

microsoft.com/sql/techinfo/whitepapers/spatialdata.mspx
2013d. Greenplum. (2013). http://www.greenplum.com/products/greenplum-database
2013e. Hadoop-GIS Wiki. (2013). https://web.cci.emory.edu/confluence/display/

HadoopGIS
2013f. IBM DB2 Spatial. (2013). http://www-01.ibm.com/software/data/spatial/
2013g. IBM Netezza. (2013). http://www-01.ibm.com/software/data/netezza/

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:16 S Jha et al.

2013h. Oracle Spatial and Oracle Locator. (2013). http://www.oracle.com/us/products/
database/options/spatial/overview/index.html

2013i. PostGIS. (2013). http://postgis.refractions.net/
2013j. Teradata. (2013). http://www.teradata.com/
Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard

Szeliski. 2009. Building Rome in a day. (Sept. 29-Oct. 2 2009).
DOI:http://dx.doi.org/10.1109/ICCV.2009.5459148

Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and
Joel Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Warehousing Sys-
tem Over MapReduce. Proc. VLDB Endow. 6, 11 (2013), 1009–1020.

Afsin Akdogan, Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi.
2010. Voronoi-Based Geospatial Query Processing with MapReduce. (2010).

Maksudul Alam, Maleq Khan, and Madhav V. Marathe. 2013. Distributed-memory
parallel algorithms for generating massive scale-free networks using preferential
attachment model. (2013). DOI:http://dx.doi.org/10.1145/2503210.2503291

N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Sahinalp. 2008. Biomolecular
network motif counting and discovery by color coding. Bioinformatics 24, 13 (2008),
i241.

Apache Mahout. 2012. Apache Mahout Scalable machine learning and data mining.
http://mahout.apache.org/. (2012).

V. Aravind and V. Raman. 2002. Approximate counting of small subgraphs of bounded
treewidth and related problems. (2002).

Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. 2013. PATRIC:
a parallel algorithm for counting triangles in massive networks. (2013).
DOI:http://dx.doi.org/10.1145/2505515.2505545

D.A. Bader. 2010. Analyzing Massive Social Networks using Multicore and Multi-
threaded Architectures. Facing the Multicore-Challenge: Aspects of New Paradigms
and Technologies in Parallel Computing, Lecture Notes in Computer Science 6310, 1
(2010).

D.A. Bader and G. Cong. 2004. Fast Shared-Memory Algorithms for Computing the
Minimum Spanning Forest of Sparse Graphs. (April 26-30 2004).

D.A. Bader and K. Madduri. 2008. A Graph-Theoretic Analysis of the Human Protein-
Interaction Network Using Multi-core Parallel Algorithms. Parallel Comput. 34, 11
(2008), 627–639.

David A. Bader and Guojing Cong. 2005. A fast, parallel spanning tree algorithm for
symmetric multiprocessors (SMPs). J. Parallel Distrib. Comput. 65, 9 (2005), 994–
1006. DOI:http://dx.doi.org/10.1016/j.jpdc.2005.03.011

D. A. Bader and . J. JJ. 1996. Parallel Algorithms for Image Histogramming and Con-
nected Components with an Experimental Study. J. Parallel and Distrib. Comput.
35, 2 (1996), 173–190.

Seung-Hee Bae. 2012. SCALABLE HIGH PERFORMANCE MULTIDIMEN-
SIONAL SCALING. Thesis. http://grids.ucs.indiana.edu/ptliupages/publications/
SeungheeBae Dissertation.pdf

Jaime Ballesteros, Ariel Cary, and Naphtali Rishe. 2011. SpSJoin: Parallel Spatial
Similarity Joins. (2011). DOI:http://dx.doi.org/10.1145/2093973.2094054

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, and H. Van der Vorst. 1994. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA.

V. Batagelj and A. Mrvar. 1998. Pajek - Program for Large Network Analysis. Connec-
tions 21, 2 (1998), 47–57. http://vlado.fmf.uni-lj.si/pub/networks/doc/pajek.pdf

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:17

Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. 2009.
Experiences on Processing Spatial Data with MapReduce. (2009).
DOI:http://dx.doi.org/10.1007/978-3-642-02279-1 24

Kang-Tsung Chang. 2003. Introduction to Geographic Information Systems. Prentice
Hall PTR. 384 pages.

Wo Chang. 2014. ISO/IEC JTC 1 Study Group on Big Data. http://jtc1bigdatasg.
nist.gov/flyer BigDataEcosystem Workshop US.pdf. In 1st Big Data Interoperability
Framework Workshop: Building Robust Big Data Ecosystem, Vol. 2014. NIST.

Jong Youl Choi. 2012. Unsupervised Learning Of Finite Mixture Models With Deter-
ministic Annealing For Large-scale Data Analysis. Thesis. http://grids.ucs.indiana.
edu/ptliupages/publications/damix.final.v1.pdf

Jong Youl Choi, Mohammad H. Abbasi, David Pugmire, Scott Klasky, Judy Qiu, and
Geoffrey Fox. 2012. Mining Hidden Mixture Context With ADIOS-P To Improve
Predictive Pre-fetcher Accuracy. (October 8-12 2012). http://grids.ucs.indiana.edu/
ptliupages/publications/hcming(1).pdf

Jong Youl Choi, Seung-Hee Bae, Judy Qiu, Bin Chen, and David Wild. 2011. Browsing
Large Scale Cheminformatics Data with Dimension Reduction. Concurr. Comput.
: Pract. Exper. Special Issue on ECMLS2010 (2011). http://grids.ucs.indiana.edu/
ptliupages/publications/plotviz.v6.pdf

David Crandall, Andrew Owens, Noah Snavely, and Daniel P. Huttenlocher. 2011.
Discrete-continuous optimization for large-scale structure from motion. (2011).

David Crandall and Noah Snavely. 2012. Modeling people and places
with internet photo collections. Commun. ACM 55, 6 (2012), 52–60.
DOI:http://dx.doi.org/10.1145/2184319.2184336

Navneet Dalal and Bill Triggs. 2005. Histograms of Oriented Gradients for Human
Detection. (2005). DOI:http://dx.doi.org/10.1109/cvpr.2005.177

P. Daszak. 2000. Emerging Infectious Diseases of Wildlife– Threats to
Biodiversity and Human Health. Science 287, 5452 (2000), 443–449.
DOI:http://dx.doi.org/10.1126/science.287.5452.443

Rob F. Van der Wijngaart, Srinivas Sridharan, and Victor W. Lee. 2012. Extending the
BT NAS parallel benchmark to exascale computing. (2012).

D. Ediger, K. Jiang, E.J. Riedy, and D.A. Bader. 2012. GraphCT: Multithreaded Algo-
rithms for Massive Graph Analysis. ’IEEE Transactions on Parallel & Distributed
Systems (2012).

Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason,
Jong Youl Choi, Yang Ruan, Seung-Hee Bae, and Hui Li. 2010a. Applicability of
DryadLINQ to Scientific Applications. Report. Community Grids Laboratory, Indi-
ana University.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and G. Fox. 2010b.
Twister: A Runtime for iterative MapReduce. (2010). http://grids.ucs.indiana.edu/
ptliupages/publications/hpdc-camera-ready-submission.pdf

Ahmed Eldawy and Mohamed Mokbel. 2013. A Demonstration of SpatialHadoop: An
Efficient MapReduce Framework for Spatial Data. (2013).

Christos Faloutsos. 2012. Project Pegasus Peta-Scale graph mining. (2012). http:
//www.cs.cmu.edu/∼pegasus/

S. Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3-5 (2010),
75–174.

Geoffrey Fox. 2013. Robust Scalable Visualized Clustering in Vector and
non Vector Semimetric Spaces. Parallel Processing Letters 23, 2 (2013).
DOI:http://dx.doi.org/doi/abs/10.1142/S0129626413400069

Geoffrey Fox, Seung-Hee Bae, Jaliya Ekanayake, Xiaohong Qiu, and Huapeng
Yuan. 2009a. Parallel Data Mining from Multicore to Cloudy Grids.

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:18 S Jha et al.

IOS Press, Amsterdam. http://grids.ucs.indiana.edu/ptliupages/publications/
CetraroWriteupJune11-09.pdf

Geoffrey Fox, Xiaohong Qiu, Scott Beason, Jong Youl Choi, Mina Rho, Haixu Tang, Neil
Devadasan, and Gilbert Liu. 2009b. Biomedical Case Studies in Data Intensive Com-
puting. (December 1-4 2009). http://grids.ucs.indiana.edu/ptliupages/publications/
SALSACloudCompaperOct10-09.pdf

Judy Fox Fox, Shantenu Jha and Andre Luckow. 2014. Towards an Understanding of
Facets and Exemplars of Big Data Applications. (October 13-14 2014).

Rudolf Fruhwirth, D. R. Mani, and Saumyadipta Pyne. 2011. Clustering with
position-specific constraints on variance: Applying redescending M-estimators to
label-free LC-MS data analysis. BMC Bioinformatics 12, 1 (2011), 358. http:
//www.biomedcentral.com/1471-2105/12/358

I. G. Goldberg, C. Allan, J. M. Burel, D. Creager, A. Falconi, H. Hochheiser, J.
Johnston, J. Mellen, P. K. Sorger, and J. R. Swedlow. 2005. The Open Mi-
croscopy Environment (OME) Data Model and XML file: open tools for informat-
ics and quantitative analysis in biological imaging. Genome Biol 6, 5 (2005), R47.
DOI:http://dx.doi.org/gb-2005-6-5-r47[pii];10.1186/gb-2005-6-5-r47

M. Gonen and Y. Shavitt. 2009. Approximating the number of network motifs. (2009).
O. Green, R. McColl, and D.A. Bader. 2012. A Fast Algorithm for Incremental Be-

tweenness Centrality. (September 3-5 2012).
Danhuai Guo, Kaichao Wu, Jianhui Li, and Yuwei Wang. 2010. Spatial scene similarity

assessment on Hadoop. (2010). DOI:http://dx.doi.org/10.1145/1869692.1869700
A. A. Hagberg, D. A. Schult, and P. J. Swart. 2008. Exploring network struc-

ture, dynamics, and function using NetworkX. (2008). http://conference.scipy.org/
proceedings/scipy2008/paper 2/

M. Handcock, D. Hunter, C. Butts, S. Goodreau, and M. Morris. 2003. statnet:
Software tools for the Statistical Modeling of Network Data, Version 2.0. (2003).
http://statnetproject.org

Linda Hayden, Geoffrey Fox, and Prasad Gogineni. 2007. CYBERINFRASTRUCTURE
FOR REMOTE SENSING OF ICE SHEETS. (June 4-8 2007). http://grids.ucs.
indiana.edu/ptliupages/publications/TeraGrid07 paper.pdf

James Hays and Alexei A. Efros. 2007. Scene completion us-
ing millions of photographs. ACM Trans. Graph. 26, 3 (2007), 4.
DOI:http://dx.doi.org/10.1145/1276377.1276382

James Hays and Alexei A. Efros. 2008. IM2GPS: Estimating Geographic Information
from a Single Image. (2008).

Hortonworks. 2014. Apache Hadoop YARN is a sub-project of Hadoop introduced in
Hadoop 2.0. (2014). http://hortonworks.com/hadoop/yarn/

Adam Hughes, Yang Ruan, Saliya Ekanayake, Seung-Hee Bae, Qunfeng Dong, Mina
Rho, Judy Qiu, and Geoffrey Fox. 2012. Interpolative Multidimensional Scaling
Techniques for the Identification of Clusters in Very Large Sequence Sets. BMC
Bioinformatics 13(Suppl 2):S9, Special Issue of for Proceedings of GLBIO Great
Lakes Bioinformatics Conference Ohio University Athens Ohio May 2-4 2011 (2012).
DOI:http://dx.doi.org/10.1186/1471-2105-13-S2-S9

S. Jha, M. Cole, D. Katz, O. Rana, M. Parashar, and J. Weissman. 2013. Dis-
tributed Computing Practice for Large-Scale Science & Engineering Applications.
Concurrency and Computation: Practice and Experience 25, 11 (2013), 1559–1585.
DOI:http://dx.doi.org/10.1002/cpe.2897

Shantenu Jha, Neil Chue Hong, Simon Dobson, Daniel S. Katz, Andre Luckow,
Omer Rana, and Yogesh Simmhan. 2014a. Introducing Distributed Dynamic Data-
intensive (D3) Science: Understanding Applications and Infrastructure. (2014).

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:19

Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C. Fox. 2014b.
A Tale of Two Data-Intensive Approaches: Applications, Architectures and Infras-
tructure. http://arxiv.org/abs/1403.1528. (June 27- July 2 2014).

K. Jiang, D. Ediger, and D.A. Bader. 2009. Generalizing k-Betweenness Centrality
Using Short Paths and a Parallel Multithreaded Implementation. (September 22-25
2009).

U Kang, Charalampos Tsourakakis, and Christos Faloutsos. 2009. PEGASUS: A Peta-
Scale Graph Mining System - Implementation and Observations. (December 2009).

U Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos Faloutsos, and Jure
Leskovec. 2011. HADI: Mining Radii of Large Graphs. ACM Trans. Knowl. Discov.
Data 5, 2 (2011), 1–24. DOI:http://dx.doi.org/10.1145/1921632.1921634

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of computa-
tion for MapReduce. (2010).

Anthony J. Kearsley, Richard A. Tapia, and Michael W. Trosset. 1995. The Solution
of the Metric STRESS and SSTRESS Problems in Multidimensional Scaling Using
Newtons Method. Report. Rice University.

Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson.
2013. The Distributed Complexity of Large-scale Graph Processing. Report. http:
//arxiv.org/abs/1311.6209

J. Leskovec. 2012. Stanford Network Analysis Project. (2012). http://snap.stanford.
edu/

Wengen Li, Weili Wang, and Ting Jin. 2012. Evaluating Spatial Keyword Queries un-
der the MapReduce Framework Database Systems for Advanced Applications. Lec-
ture Notes in Computer Science, Vol. 7240. Springer Berlin / Heidelberg, 251–261.
DOI:http://dx.doi.org/10.1007/978-3-642-29023-7 26

Yunpeng Li, David Crandall, and Daniel P. Huttenlocher. 2009. Landmark Classifica-
tion in Large-scale Image Collections. (2009).

Yan Liu, Kaichao Wu, Shaowen Wang, Yanli Zhao, and Qian Huang.
2010. A MapReduce Approach to Gi*(d) Spatial Statistic. (2010).
DOI:http://dx.doi.org/10.1145/1869692.1869695

David G. Lowe. 2004. Distinctive Image Features from Scale-
Invariant Keypoints. Int. J. Comput. Vision 60, 2 (2004), 91–110.
DOI:http://dx.doi.org/10.1023/b:visi.0000029664.99615.94

Andre Luckow, Mark Santcroos, and Shantenu Jha. 2014. Pilot-Data: An Abstraction
for Distributed Data. J. Parallel and Distrib. Comput. In press (2014). http://arXiv.
org/abs/1301.6228

Andre Luckow, Mark Santcroos, Ole Weidner, Andre Merzky, Pradeep Man-
tha, and Shantenu Jha. 2012. P*: A Model of Pilot-Abstractions. (2012).
DOI:http://dx.doi.org/10.1109/eScience.2012.6404423

Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. 2009. Query
Processing of Massive Trajectory Data Based on Mapreduce. (2009).
DOI:http://dx.doi.org/10.1145/1651263.1651266

K. Madduri and D.A. Bader. 2009. Compact Graph Representations and Parallel Con-
nectivity Algorithms for Massive Dynamic Network Analysis. (May 25-29 2009).

K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak. 2007. An Experimental Study of
A Parallel Shortest Path Algorithm for Solving Large-Scale Graph Instances. (Jan-
uary 6 2007).

Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, and Daniel Chavarria-
Miranda. 2009. A faster parallel algorithm and efficient multithreaded imple-
mentations for evaluating betweenness centrality on massive datasets. (2009).
DOI:http://dx.doi.org/10.1109/ipdps.2009.5161100

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:20 S Jha et al.

M. E. Martone, J. Tran, W. W. Wong, J. Sargis, L. Fong, S. Larson,
S. P. Lamont, A. Gupta, and M. H. Ellisman. 2008. The cell centered
database project: an update on building community resources for manag-
ing and sharing 3D imaging data. J Struct Biol 161, 3 (2008), 220–31.
DOI:http://dx.doi.org/S1047-8477(07)00254-7[pii];10.1016/j.jsb.2007.10.003

M. E. Martone, S. Zhang, A. Gupta, X. Qian, H. He, D. L. Price, M. Wong, S. Santini,
and M. H. Ellisman. 2003. The cell-centered database: a database for multiscale
structural and protein localization data from light and electron microscopy. 1, 4
(2003), 379–95. DOI:http://dx.doi.org/NI:1:4:379[pii];10.1385/NI:1:4:379

Manish Mehta and David J. DeWitt. 1995. Managing Intra-operator Parallelism in
Parallel Database Systems. (1995).

Henning Meyerhenke, David Ediger, and David A. Bader. 2011. Parallel Community
Detection for Massive Graphs. (September 2011).

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Net-
work motifs: simple building blocks of complex networks. Science 298, 5594 (2002),
824.

MLLib. 2014. Machine Learning Library (MLlib). http://spark.apache.org/docs/0.9.0/
mllib-guide.html. (2014).

A. Lumsdaine N. Edmonds, T. Hoefler. 2010. A space-efficient parallel algorithm for
computing betweenness centrality in distributed memory. (2010).

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infras-
tructure for graph analytics. (2013). DOI:http://dx.doi.org/10.1145/2517349.2522739

NIST. 2013a. Big Data Initiative Reports from V1. http://bigdatawg.nist.gov/V1
output docs.php. (2013).

NIST. 2013b. NIST Big Data Public Working Group (NBD-PWG) Use Cases and Re-
quirements. http://bigdatawg.nist.gov/usecases.php, (2013).

Jignesh Patel, JieBing Yu, Navin Kabra, Kristin Tufte, Biswadeep Nag, Josef Burger,
Nancy Hall, Karthikeyan Ramasamy, Roger Lueder, Curt Ellmann, Jim Kupsch,
Shelly Guo, Johan Larson, David De Witt, and Jeffrey Naughton. 1997. Building
A Scaleable Geo-Spatial DBMS: Technology, Implementation and Evaluation. SIG-
MOD Rec. 26, 2 (1997), 336–347. DOI:http://dx.doi.org/10.1145/253262.253342

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stone-
braker. 2009. A Comparison of Approaches to Large-Scale Data Analysis. (2009).

Alexei Pozdnoukhov and Christian Kaiser. 2011. Scalable Local Regression for Spatial
Analytics. (2011). DOI:http://dx.doi.org/10.1145/2093973.2094023

Dimitrios Prountzos and Keshav Pingali. 2013. Betweenness centrality:
algorithms and implementations. SIGPLAN Not. 48, 8 (2013), 35–46.
DOI:http://dx.doi.org/10.1145/2517327.2442521

G. Qin and L. Gao. 2012. An algorithm for network motif discovery in biological net-
works. International Journal of Data Mining and Bioinformatics 6, 1 (2012), 1–16.

Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee
Bae, Hui Li, Bingjing Zhang, Tak-Lon Wu, Yang Ryan, Saliya Ekanayake,
Adam Hughes, and Geoffrey Fox. 2010. Hybrid cloud and cluster comput-
ing paradigms for life science applications. BMC Bioinformatics Proceed-
ings of BOSC 2010 (2010). http://grids.ucs.indiana.edu/ptliupages/publications/
HybridCloudandClusterComputingParadigmsforLifeScienceApplications Pub.pdf

Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae,
Yang Ruan, Saliya Ekanayake, Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho,
and Haixu Tang. 2011. Data Intensive Computing for Bioinformatics. IGI Publishers.
DOI:http://dx.doi.org/10.4018/978-1-6152971-2

Judy Qiu, Thilina Gunarathne, Jaliya Ekanayake, Jong Youl Choi, Seung-
Hee Bae, Hui Li, Bingjing Zhang, Yang Ryan, Saliya Ekanayake, Tak-

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

Towards HPC-ABDS: An Initial High-Performance BigData Stack 1:21

Lon Wu, Scott Beason, Adam Hughes, and Geoffrey Fox. 2010. Hy-
brid Cloud and Cluster Computing Paradigms for Life Science Applica-
tions. (July 9-10 2010). http://grids.ucs.indiana.edu/ptliupages/publications/
HybridCloudandClusterComputingParadigmsforLifeScienceApplications.pdf

Judy Qiu and Bingjing Zhang. 2013. Clustering Social Images with MapReduce and
High Performance Collective Communication. IOS Press. http://grids.ucs.indiana.
edu/ptliupages/publications/MammothDataintheCloudClusteringSocialImage.pdf

Judy Qiu and Bingjing Zhang. 2014. Harp: a runtime for efficient in-memory commu-
nication. (2014). http://salsaproj.indiana.edu/harp/

R Project. 2012. R open source statistical library. http://www.r-project.org/. (2012).
P. Ribeiro, F. Silva, and L. Lopes. 2012. Parallel discovery of network motifs. J. Parallel

and Distrib. Comput. 72, 2 (2012), 144–154.
Ken Rose. 1998. Deterministic Annealing for Clustering, Compression, Classification,

Regression, and Related Optimization Problems. Proc. IEEE 86 (1998), 2210–2239.
Ken Rose, Eitan Gurewitz, and Geoffrey Fox. 1990. A deterministic annealing ap-

proach to clustering. Pattern Recogn. Lett. 11 (1990), 589–594.
Yang Ruan, Saliya Ekanayake, Mina Rho, Haixu Tang, Seung-Hee Bae, Judy Qiu,

and Geoffrey Fox. 2012a. DACIDR: Deterministic Annealed Clustering with In-
terpolative Dimension Reduction using Large Collection of 16S rRNA Sequences.
(October 7-10 2012). http://grids.ucs.indiana.edu/ptliupages/publications/DACIDR
camera ready v0.3.pdf

Yang Ruan and Geoffrey Fox. 2013. A Robust and Scalable Solution for In-
terpolative Multidimensional Scaling with Weighting. (October 22-25 2013).
DOI:http://dx.doi.org/10.1109/eScience.2013.30

Yang Ruan, Zhenhua Guo, Yuduo Zhou, Judy Qiu, and Geoffrey Fox. 2012b. HyMR: a
Hybrid MapReduce Workflow System. (June 18 2012). http://grids.ucs.indiana.edu/
ptliupages/publications/HyMR submission HPDC workshop final.pdf

Yang Ruan, Geoffrey L. House, Saliya Ekanayake, Ursel Schtte, James D. Bever,
Haixu Tang, and Geoffrey Fox. 2014. Integration of Clustering and Multidimen-
sional Scaling to Determine Phylogenetic Trees as Spherical Phylograms Visual-
ized in 3 Dimensions. (May 26-29 2014). http://grids.ucs.indiana.edu/ptliupages/
publications/PhylogeneticTreeDisplayWithClustering.pdf

S. Sarkar and A. Dong. 2011. Community detection in graphs using singular value
decomposition. Physical Review E 83, 4 (2011), 04611.

V. Satuluri and S. Parthasarathy. 2009. Scalable graph clustering using stochastic
ows: applications to community discovery. (2009).

Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. 2011.
Local graph sparsification for scalable clustering. (2011).
DOI:http://dx.doi.org/10.1145/1989323.1989399

D. A. Schiffmann, D. Dikovskaya, P. L. Appleton, I. P. Newton, D. A. Creager, C. Allan,
I. S. Nathke, and I. G. Goldberg. 2006. Open microscopy environment and findspots:
integrating image informatics with quantitative multidimensional image analysis.
Biotechniques 41, 2 (2006), 199–208. DOI:http://dx.doi.org/000112224[pii]

C. Seshadhri, T. Kolda, and A. Pinar. 2012a. Community structure and scale-free
collections of Erdos–Renyi graphs. Physical Review E (2012). http://arxiv.org/abs/
1112.3644

C. Seshadhri, A. Pinar, and T. Kolda. 2012b. Fast Triangle Counting through Wedge
Sampling. (2012). http://arxiv.org/abs/1202.5230

Larissa Stanberry, Roger Higdon, Winston Haynes, Natali Kolker, William Broomall,
Saliya Ekanayake, Yang Ruan, Judy Qiu, Eugene Kolker, Geoffrey Fox, and Adam
Hughes. 2012. Visualizing the Protein Sequence Universe. (June 18 2012). http:
//grids.ucs.indiana.edu/ptliupages/publications/paperDelft final.pdf

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

1:22 S Jha et al.

Antonio Torralba, Kevin P Murphy, William T Freeman, and Mark A Rubin. Context-
based vision system for place and object recognition. In Computer Vision, 2003. Pro-
ceedings. Ninth IEEE International Conference on. IEEE, 273–280.

Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos Faloutsos. 2009.
DOULION: Counting triangles in massive graphs with coin. (2009).

Stanford University. 2014. ImageNet image database organized according to the Word-
Net hierarchy. (2014). http://www.image-net.org/

Fusheng Wang, Jun Kong, Jingjing Gao, Lee A.D. Cooper, Tahsin Kurc, Zhengwen
Zhou, David Adler, Cristobal Vergara-Niedermayr, Bryan Katigbak, Daniel J Brat,
and Joel H Saltz. 2013. A high-performance spatial database based approach for
pathology imaging algorithm evaluation. J Pathol Inform. 4, 5 (2013).

F Wang, T Kurc, P Widener, T Pan, J Kong, L Cooper, D Gutman, A Sharma, S Cholleti,
V Kumar, and J Saltz. 2010. High-performance Systems for In Silico Microscopy
Imaging Studies. The 7th International Conference on Data Integration in the Life
Sciences, Gothenburg, Sweden (2010).

Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong Zhang, and Joel Saltz.
2012. Accelerating Pathology Image Data Cross Comparison on CPU-GPU Hybrid
Systems. Proc. VLDB Endow. 5, 11 (2012), 1543–1554.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.
SUN database: Large-scale scene recognition from abbey to zoo. In Computer vision
and pattern recognition (CVPR), 2010 IEEE conference on. IEEE, 3485–3492.

Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong Feng. Spatial
Queries Evaluation with MapReduce. In Eighth International Conference on Grid
and Cooperative Computing. 287–292. DOI:http://dx.doi.org/10.1109/gcc.2009.16

Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. SJMR: Paral-
lelizing Spatial Join with MapReduce on Clusters. In IEEE International Conference
on Cluster Computing. 1–8. DOI:http://dx.doi.org/10.1109/clustr.2009.5289178

Y. Zhang, Z. Wang, Y. Wang, and L. Zhou. 2009. Parallel community detection on large
networks with propinquity dynamics. (2009).

Zhao Zhao, Maleq Khan, V. S. Anil Kumar, and Madhav V. Marathe. 2010. Subgraph
Enumeration in Large Social Contact Networks Using Parallel Color Coding and
Streaming. (2010). DOI:http://dx.doi.org/10.1109/icpp.2010.67

Z. Zhao, G. Wang, A. Butt, M. Khan, V. S. Anil Kumar, and M. Marathe. 2012. SAHAD:
Subgraph Analysis in Massive Networks Using Hadoop. (May 2012).

ACM, Vol. 1, No. 1, Article 1, Publication date: August 2014.

